求数列{(2n1)5ⁿ}的前n项和解:a‹n›(2n1)5ⁿS‹n›15¹+35²+55³+75⁴++(2n1)5ⁿ(1)5S‹n›15²+35³+55⁴++(2n3)5ⁿ+(2n1)5^(n+1)(2)(1)(2)(错项相减)得:4S‹n›15¹+25²+25³+25⁴++25ⁿ(2n1)5^(n+1)5+2(5²+5³+⁴++5ⁿ)(2n1)5^(n+1)5+2(5¹+5²+5³+⁴++5ⁿ)(2n1)5^(n+1)5+25(5ⁿ1)4(2n1)5^(n+1)(152)+(32)2n5^(n+1)∴S‹n›(14){(152)+(32)2n5^(n+1)}(n2)(38)5^(n+1)+(158)